

Enabling Australia's Field Technicians to build, troubleshoot and maintain better communications networks.

This reference material is provided by TMG Test Equipment, VIAVI's **only** Master Distributor for Contractors in Australia

Finance Available

T-BERD®/MTS-4000 Multiple Services Test Platform

Multimode/Single-mode OTDR Modules

Key Features

- Combines Dual-, Quad-lambda multimode (MM), and single-mode (SM)
- Dynamic range of 27/25 dB (MM), 37/35 dB (SM)
- First-to-market MM/SM OTDR with truly integrated Loss Test Sets
- Automated bend detection
- Propagation delay measurement in multimode (TIA-568-C)
- Combines with the Ethernet Services Application Module* (ESAM)

Applications

- Optimized for testing 10 MB to 10 GigE
- Enables Tier 1 and Tier 2 certification of Premises networks
- Install, turn up, and maintain Access networks/LAN/WAN
- Wireless backhaul construction, turn-up, and maintenance

Compliance

• IEC 61280-4-1 using an external mode conditioner

In today's demanding communications market, test solutions must be even more cost-effective, must increase productivity, and must reduce the complexity of field testing. The JDSU Multimode (MM)/Single-mode (SM) Optical Time Domain Reflectometer (OTDR) Modules offer unmatched test functionality specifically developed in response to emerging industry demands.

The MM/SM OTDR module is an all-in-one field test instrument that integrates flexible configuration options and offers multiple wavelength test capabilities (850/1300 nm multimode, 1310/1550 nm single-mode).

With pace-setting short dead zones and enviable dynamic range performance, the MM/SM OTDR modules enable effective testing on both multimode and single-mode fiber links, addressing the needs of providers of Premises/Enterprise networks as well as wireless backhaul infrastructure.

Combining a true loss test set with the OTDR on the same port enables users to perform a full range of fiber certification tests (continuity check, total link loss, length, reflectivity of connectors, and events loss measurements) without changing fibers. This capability is integrated in both Single-mode and Multimode optical ports.

The Quad and Multimode OTDR modules work with the modular T-BERD/MTS-4000 platform to provide multi-layer testing capabilities with additional optical options including visual fault locator, talk set, and digital fiber inspection probes (with automated Pass/Fail analysis).

^{*} Requires ESAM compatible mainframe

Specifications

Generic Technical (Typical at 25°C)			
Weight 0.400 kg (0.88 lb			
Dimensions (W x H x D)	128 x 134 x 40 mm		
	(5.04 x 5.28 x 1.58 in)		
Storage	Bellcore/Telcordia-compatible		
	(Version 1.1 and Version 2.0)		

Optical Interfaces

Interchangeable optical connectors FC, SC, DIN, LC, and ST

Technical Characteristics				
Class 1				
Kilometers, feet, kilofeet, and miles				
1.30000 to 1.70000 in 0.00001 steps				
Up to 128,000 data points				
Automatic or dual cursor				
3.25 m to 260 km				
1 cm				
4 cm				
sampling resolution±1.10 ⁻⁵ x distance				
(Excluding group index uncertainties)				

Attenuation Measurement

Automatic, Manual, 2-point, 5-point, and LSA

Display range	1.25 to 55 dB
Display resolution	0.001 dB
Cursor resolution	0.001 dB
Linearity	Multimode/Single-mode: ±0.03 dB/dB
Threshold	0.01 to 5.99 dB in 0.01 dB steps

Reflectance/ORL Measurements

Reflectance accuracy	±2 dB
Display resolution	0.01 dB
Threshold	—11 to —99 dB in 1 dB steps

OTDR Multimode Module Technical (Typical at 25°C)

Central Wavelength ¹	Pulse Width	RMS Dynamic Range ²	Event Dead Zone ³	Attenuation Dead Zone 4
850/1300 nm ±30 nm	3 ns to 1 μs	27/25 dB	0.8 m	4 m

OTDR Multimode/Singlemode Module Technical (Typical at 25°C)

Central Wavelength 1	Pu se Width	RMS Dynamic Range ²	Event Dead Zone ³	Attenuation Dead Zone 4
850/1300 nm ±30 nm	3 ns to 1 μs	27/25 dB	0.8 m	4 m
1310/1550 nm ±20 nm	3 ns to 20 μs	37/35 dB	0.9 m	4 m

Power Meter (Optional–Typical at 25°C)

	Single-mode	Multimode
Optical connector	Shared with the OTDR (or	n the same port)
Power level range	−2 to −50 dBm	−3 to −30 dBm
Measurement wavelengths	1310, 1490, 1550, 1625 and 1650 nm	850 and 1300 nm
Measurement accuracy ⁵	±0.5 dB	$\pm 1dB$

Light Source (Optional-Typical at 25°C)

	Single-mode	Multimode
Optical connector	Shared with the OTDR	(on the same port)
Central wavelength	1310, 1550 nm	850, 1300 nm
CW output power level	−3.5 dBm	−3.5 dBm
Modulation frequency	CW: 270 Hz. 330 Hz. 1 kHz an	d 2 kHz; Auto-λ; TWINtest

- 1. Laser at 25°C
- 2. The one-way difference between the extrapolated backscattering level at the start of the fiber and the RMS noise level, after 3 minutes averaging, with the largest pulse width.
- 3. Measured at $\pm 1.5~\mathrm{dB}$ down from the peak of an unsaturated reflective event, at shortest pulse width.
- $4. \ \ Measured \ at \ \pm 0.5 \ dB \ from \ the \ linear \ regression \ using \ a \ typical \ FC/UPC \ reflectance, \ at \ shortest \ pulse \ width.$
- 5. At $-30~\mathrm{dBm}$ for single-mode, and at $-15~\mathrm{dBm}$ for multimode using a mode conditioner.

3

Ordering Information

Ordering Information			
Part Number	Description		
E4146QUAD	Multimode/Single-mode 850/1300/1310/1550 nm 0TDR		
E4123MM	Multimode 850/1300 nm OTDR		
EFJEF50CONSCPC	EF Modal Controller for 50 μm MM Fiber—SC/PC		
EFJEF50CONFCPC	EF Modal Controller for 50 μm MM Fiber—FC/PC		
E410TDRLS	Continuous and Modulated Source Option		
E410TDRPM	Broadband Power Meter Option		
Universal Optical Connectors			
EUNIPCFC, EUNIPCSC, EUNIPCST, EUNIPCDIN, EUNIPCLC	Straight Connectors (Single-mode port)		
EUNIAPCFC, EUNIAPCSC, EUNIAPCDIN, EUNIAPCLC	8° Angled Connectors (Single-mode port)		
EUNIPCFCMM, EUNIPCSCMM, EUNIPCSTMM, EUNIPCDINMM, EUNIPCLCMM	Straight Connectors (Multimode port)		

Test & Measurement Regional Sales

NORTH AMERICA	LATIN AMERICA	ASIA PACIFIC	EMEA	WEBSITE: www.jdsu.com/test
TEL: 1 866 228 3762	TEL: +1 954 688 5660	TEL: +852 2892 0990	TEL: +49 7121 86 2222	·
FAX: +1 301 353 9216	FAX: +1 954 345 4668	FAX: +852 2892 0770	FAX: +49 7121 86 1222	