

ABN 43 064 478 842

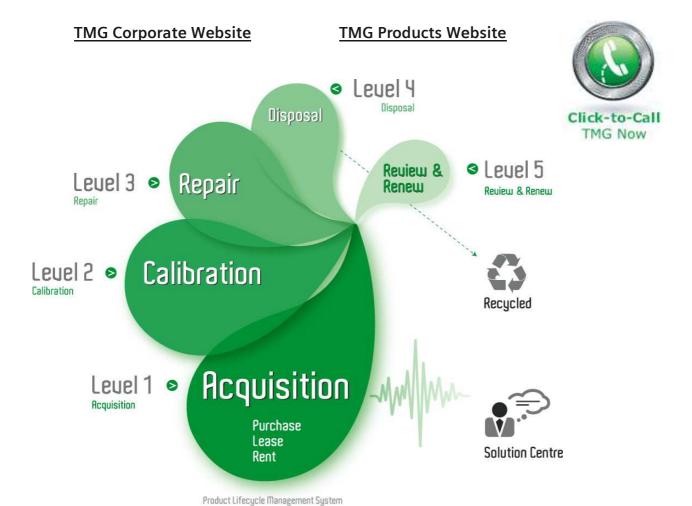
231 osborne avenue clayton south, vic 3169
 PO box 1548, clayton south, vic 3169
 t 03 9265 7400 f 03 9558 0875
 freecall 1800 680 680

www.tmgtestequipment.com.au

Test & Measurement

- sales
- rentals
- calibration
- repair
- disposal

Complimentary Reference Material


This PDF has been made available as a complimentary service for you to assist in evaluating this model for your testing requirements.

TMG offers a wide range of test equipment solutions, from renting short to long term, buying refurbished and purchasing new. Financing options, such as Financial Rental, and Leasing are also available on application.

TMG will assist if you are unsure whether this model will suit your requirements.

Call TMG if you need to organise repair and/or calibrate your unit.

If you click on the "Click-to-Call" logo below, you can all us for FREE!

Disclaimer:

All trademarks appearing within this PDF are trademarks of their respective owners.

R&S®FSG Spectrum Analyzer

Spectrum analysis for wideband communication technologies

- ◆ Up to 8 GHz and 13 GHz
- ◆ 28 MHz I/Q demodulation bandwidth
- ◆ 4 Msample I and Q memory
- I/O data extraction, e.g. for MCPA adjustment
- Spectrum and code domain power measurements for
 - 3GPP FDD/HSDPA
 - CDMA2000® 1xRTT
 - CDMA2000® 1xEV-DV
 - CDMA2000® 1xEV-D0
 - TD-SCDMA
- Spectrum and modulation measurements for
 - GSM/EDGE
 - WLAN
 - WiMAX
 - LTE 3GPP
 - Bluetooth®

- Fast, fully integrated vector signal analysis
- Dynamic range of a high-end spectrum analyzer
 - TOI: typ. +25 dBm
 - 1 dB compression: +13 dBm
 - 84 dB ACLR/3GPP with noise correction
- Power sensor compatibilty

Future-proof performance and bandwidth

Spectrum and signal analysis in a single instrument

Future transmission methods in mobile radio and broadband communication call for wider transmission bandwidths to handle increasing data throughput. Today, multiple carriers of a GSM or 3GPP base station are often boosted in common power output stages to reduce the technical effort and cost. This approach on the other hand increases the bandwidth to be transmitted. In both cases, analysis bandwidths exceeding those provided by most spectrum analyzers are required in development and production, while at the same time the dynamic range must satisfy stringent requirements.

The R&S®FSG is ideal for applications in the development and production of the following:

- 3GPP and GSM-MCPA
- WiMAX
- ◆ LTE
- Wireless LAN (WLAN)

It additionally supports measurements on 2G, 2.5G, and 3G mobile radio systems when using application firmware such as:

- GSM/EDGE, R&S®FS-K5
- ◆ 3GPP FDD, R&S®FS-K72/-K73
- HSDPA, R&S®FS-K74
- CDMA2000®, R&S®FS-K82/-K83/ -K84/-K85
- ◆ TD-SCDMA, R&S®FS-K76/-K77

The operating concept of the R&S®FSG is identical to that of the R&S®FSQ, R&S®FSU, and R&S®FSP spectrum analyzers, including the GPIB/IEC commands. These instruments thus offer a uniform platform for a variety of applications.

The R&S®FSG family

R&S®FSG8	9 kHz to 8 GHz
R&S®FSG 13	9 kHz to 13.6 GHz

The R&S®FSG has a lot to offer

The R&S®FSG is a full-fledged high-performance spectrum analyzer:

- 84 dB ACLR for 3GPP with noise correction
- 77 dB ACLR for 3GPP multicarrier signals (4 adjacent carriers)
- ◆ TOI >+20 dBm, typ. +25 dBm
- 1-dB compression +13 dBm
- Displayed average noise level (DANL) -158 dBm (1 Hz bandwidth)
- ◆ Phase noise -150 dBc (1 Hz) at 10 MHz carrier offset
- ◆ Phase noise -114 dBc (1 Hz) at 10 kHz carrier offset

In addition to broadband demodulation capabilities, the R&S®FSG provides the dynamic range that is required for multicarrier measurements or the measurement of spurious emissions at base transceiver stations (BTS).

Functions at a glance

With its wide range of functions, the R&S®FSG is practically unparalleled on the spectrum analyzer market. Even the base unit comes standard with all important functions.

GPIB interface, IEEE 488.2
RS-232-C serial interface, 9-pin D-Sub
LAN interface 100BaseT
USB connector
VGA output, 15-pin D-Sub
SCPI-compatible GPIB command set
$\label{eq:R&S@FSIQ-compatible GPIB command set} R\&S@FSIQ-compatible GPIB command set$
Up to 80 measurements/s in manual mode
Up to 50/70 measurements/s in GPIB mode
Fast FFT filters from 1 Hz to 30 kHz
2.5 ms sweep time in frequency domain
1 µs sweep time in time domain
Fast ACP measurement in time domain
Harmonic distortion measurement function
0

Statistical signal analysis with CCDF function

RMS detector with 100 dB dynamic range

Spurious emission measurements with up to 100001 points, in up to 20 segments

Number of measurement points/trace selectable between 155 and 30001

Transducer factor for correcting antenna or cable frequency responses

Time-selective spectrum analysis with gating

1 Hz to 10 MHz resolution bandwidth (RBW)

Highly selective digital filters from 10 Hz to 100 kHz

4 Msample I and Q memory

External reference from 1 MHz to 20 MHz in 1 Hz steps

PC-compatible screenshots on USB or hard disk

Two-year calibration interval¹⁾

Except reference frequency.

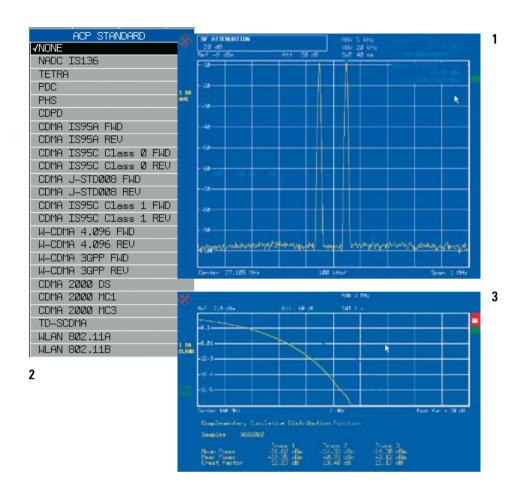
Condensed data

	R&S®FSG8	R&S®FSG13
Frequency range	9 kHz to 8 GHz	9 kHz to 13 GHz
Reference frequency	aging: 1 × 10 ⁻⁷ /year	
Spectral purity		
Phase noise typ. –114 dBc (1 Hz) at 10 kHz carrier offset		t 10 kHz carrier offset
Sweep time		
Span >10 Hz	2.5 ms to 16000 s	
Span 0 Hz (zero span) 1 µs to 16000 s		16000 s
RBW	1 Hz to 10 MHz	
VBW	1 Hz to 30 MHz	
Display range	DANL to +30 dBm	
DANL (1 Hz RBW)		
1 GHz	typ. –155 dBm	typ. —156 dBm
7 GHz	typ. –154 dBm	typ. —155 dBm
13 GHz	-	typ. –151 dBm
DANL with preamplifier ON (R&S®FSU-B25), 1 GHz, 1 Hz RBW	−162 dBm	−162 dBm

Shorter development cycles through versatile functions ...

To handle the wide variety of measurement tasks in product development, an instrument should provide ample functionality and excellent performance in all areas of interest. The R&S®FSG fully meets these requirements.

Full choice of detectors for adaptation to a wide range of signal types:

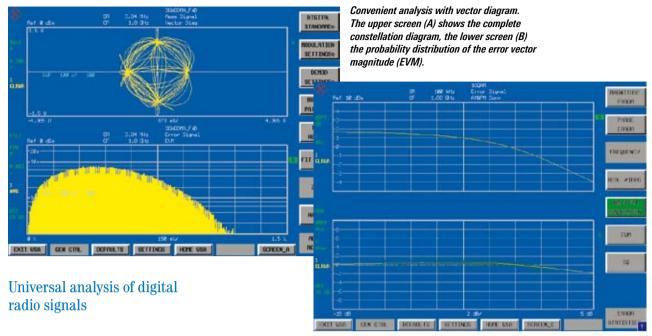

- RMS
- Auto peak
- Max peak
- Min peak
- Sample
- Average

Large range of resolution filters:

- Standard resolution filters from 10 Hz to 10 MHz in 1/2/3/5 sequence
- FFT filters from 1 Hz to 30 kHz
- Five-pole filter in line with GSM specifications

Full range of analysis functions:

- Time domain power turns the R&S®FSG into a full-fledged channel power meter
- TOI marker (Fig. 1)
- Noise/phase-noise marker
- Versatile channel/adjacent-channel power measurement functions with wide selection of standards; userconfigurable (Fig. 2)
- Split-screen mode with selectable settings (Fig. 3)
- CCDF measurement function
- Peak list marker for fast search of all peaks in the set frequency range (search for spurious)
- Multicarrier channel/adjacent channel power measurement function


Measuring frequency deviation after settling

The R&S®FS-K7 option adds a measurement demodulator for analog AM, FM, and φM modulation, allowing not only

the frequency deviation but also the frequency settling of oscillators to be determined, for example. Analyzing the demodulated signal is possible with FFT. In addition, THD and SINAD are also measured.

... wide dynamic range and future-proof performance

The optional R&S®FSQ-K70 vector signal analyzer upgrades the high-quality R&S®FSG spectrum analyzers, adding universal demodulation and analysis capability down to bit stream level for digital radio signals.

For all major mobile radiocommunications standards:

- GSM and EDGE
- ◆ WCDMA-QPSK
- ◆ CDMA2000®-QPSK
- ◆ Bluetooth®
- ◆ TETRA
- PDC
- PHS
- DECT
- ◆ NADC
- ◆ APCO25

Ready for wideband communication:

- 25 MHz symbol rate
- ◆ 28 MHz I/Q demodulation bandwidth

For all common digital modulation modes:

- ◆ BPSK, QPSK, OQPSK
- ◆ π/4 DQPSK
- 8PSK, D8PSK, 3π/8 8PSK
- ◆ (G)MSK
- ◆ 2, 4, (G)FSK
- ◆ 16, 32, 64, 128, 256 (D)QAM
- 2FSK, 4FSK
- 8VSB

Optimum representation of results:

- In-phase and quadrature signals versus time
- Magnitude and phase versus time
- Eye diagram
- Vector diagram

shows the AM/AM and AM/\partial M conversion curve of the same signal.

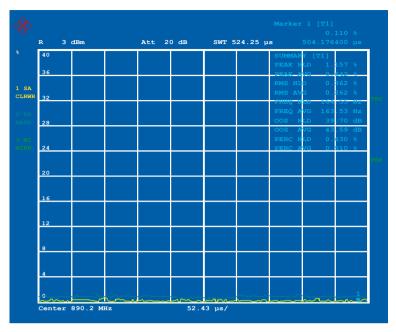
- Constellation diagram
- Table with modulation errors
- Demodulated bit stream
- Spectral evaluation
- Statistical evaluation of modulation parameters
- Amplifier distortion measurements

Software options and function expansions for general applications

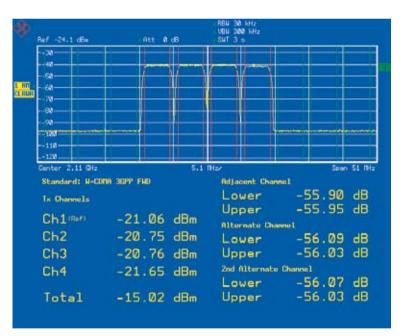
R&S®FS-K7	AM/FM/ ϕ M measurement demodulator for determining modulation frequency, THD, SINAD, and spectrum (FFT) of the demodulated signal
R&S®FS-K9	Power sensor measurements
R&S®FS-K30	Noise figure and gain measurements
R&S®FS-K40	Phase noise measurements
R&S®FSQ-K70	Universal vector signal analysis, FSK, MSK, BPSK, up to 256QAM, symbol rates up to 25 Msymbol/s

CDMA2000° is a registered trademark of the Telecommunications Industry Association (TIA -USA).

The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Rohde&Schwarz is under license


From GSM to UMTS long term evolution...

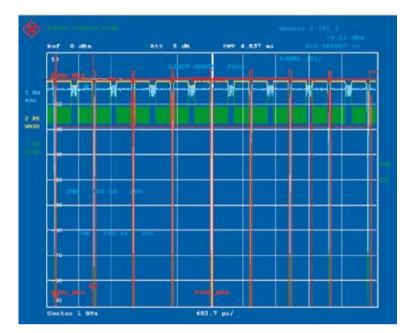
From GSM to UMTS - ready for 3G mobile radio


The feature set plus its wide dynamic range make the R&S®FSG an ideal tool in base station development and testing. This is enhanced by the excellent features that are provided by the R&S®FSG as standard, such as <0.3 dB total measurement uncertainty, gated sweep function, and IF power trigger.

Even in its basic version, the R&S®FSG provides the functionality and characteristics needed to develop, verify, and manufacture 3G mobile radio systems:

- RMS detector, provided as standard in Rohde & Schwarz analyzers for many years and allowing accurate power measurements independently of the waveform. 3GPP specifications stipulate RMS power measurements for most tests
- ACP measurement function for 3GPP with 3.84 MHz bandwidth RRC filter for standard-conforming adjacentchannel power measurements with a dynamic range limit of 77 dB, or 84 dB with noise correction (one carrier)
- Dedicated CCDF measurement function that determines the probability of instantaneous signal power exceeding average power. The CCDF measurement is indispensable in determining the clipping of the signal

Measurement of modulation accuracy on EDGE burst.

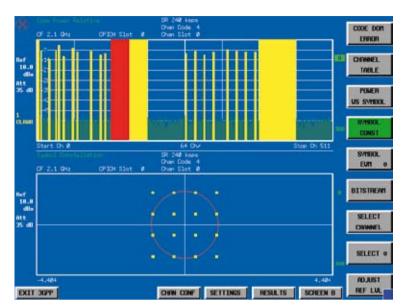

ACP measurement with 4 channels.

In conjunction with the R&S®FS-K5 GSM/EDGE application firmware, the R&S®FSG provides complete functionality for RF and modulation measurements in GSM systems. EDGE (generation 2.5), is already included in the R&S®FS-K5 option.

- Phase/frequency error for GSM
- Modulation accuracy for EDGE with:
 - EVM and ETSI-conforming weighting filters
 - 00S
 - 95:th percentile
 - Power versus time with synchronization to midamble
 - Spectrum due to modulation
 - Spectrum due to transients

- Enhanced measurement functionality in line with the Bluetooth® RF Test Specification (Bluetooth® SIG) Rev. 2.0
 - + EDR
- Measurement functions
 - Output power
 - Adjacent channel power (ACP)
 - Modulation characteristics
 - Initial carrier frequency tolerance (ICFT)
 - Carrier frequency drift
 - Inband spurious emissions, gated
 - Carrier frequency stability and modulation accuracy (DEVM)
 - Differential phase encoding
- Simultaneous display of traces and all numeric measurement results
- Automatic limit value monitoring

Simultaneous measurement of power versus time of an eight-slot EDGE signal.

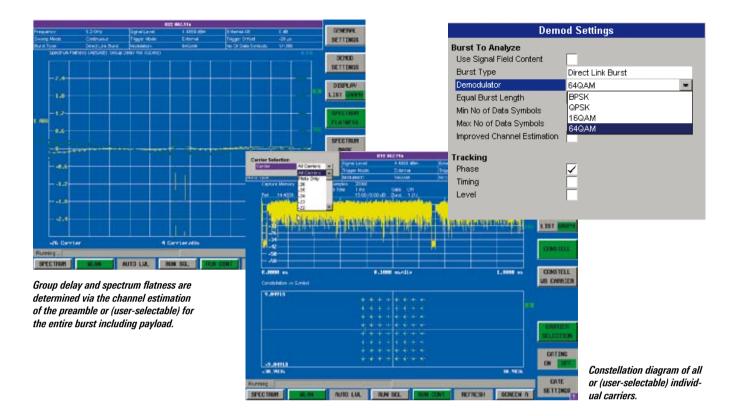


Measurement of initial carrier frequency tolerance of a Bluetooth® signal with R&S®FS-K8.

... ready for 3G mobile radio

Standard 3GPP modulation and code domain power measurements

- Additional measurement functions in line with 3GPP specifications for FDD and TDD LCR modes
- High measurement speed
- Code domain and CPICH power
- Code domain power and rho (CDMA2000®/3GPP2)
- ◆ EVM and PCDE
- Code domain power versus slot
- ◆ EVM/code channel
- Spectrum emission mask
- Constellation (symbol, composite)



WCDMA code domain power measurement with the R&S®FSG and R&S®FS-K72.

Firmware options for mobile radio applications

Туре	Designation and/or application
R&S®FS-K5	Modulation and spectrum measurements on GSM/EDGE base station and mobile signals
R&S®FS-K8	Bluetooth® transmitter measurements
R&S®FS-K72	Modulation and code domain power measurements in line with 3GPP TS 24.141 on base station signals (node B)
R&S®FS-K73	Modulation and code domain power measurements in line with 3GPP TS 25.121 on mobile station signals (UE)
R&S®FS-K74	HSDPA extension for R&S®FS-K72
R&S®FS-K76	Modulation and code domain power measurements on TD-SCDMA base station signals
R&S®FS-K77	Modulation and code domain power measurements on TD-SCDMA mobile station signals (UE)
R&S®FS-K82	Modulation and code domain power measurements in line with CDMA2000®/3GPP2 on base station signals (also for measurements on IS-95/cdma0ne signals)
R&S®FS-K83	Modulation and code domain power measurements on CDMA2000®1xEV-DV mobile station signals (UE)
R&S®FS-K84	Modulation and code domain power measurements in line with CDMA2000®1xEV-DO on base station signals
R&S®FS-K85	Modulation and code domain power measurements on CDMA2000®1xEV-D0 mobile station signals (UE)
R&S®FSQ-K91	Modulation and spectrum measurements on WLAN signals in line with IEEE 802.11 a/b/g/j
R&S®FSQ-K92	Modulation and spectrum measurements in line with IEEE 802.16-2005 OFDM
R&S®FSQ-K93	Modulation and spectrum measurements in line with IEEE 802.16-2005 OFDM and OFDMA
R&S®FSQ-K100	Modulation and spectrum measurements on EUTRA/LTE downlink signals

WLAN measurements

The R&S $^{\circ}$ FSQ-K91 application firmware provides the R&S $^{\circ}$ FSG with modulation and spectrum measurements on WLAN signals in line with IEEE 802.11 a/b/g/j.

OFDM (IEEE 802.11a/g/j)	DSSS (IEEE 802.11/b)		
Modulation formats			
OFDM with BPSK, QPSK, 16QAM, 64QAM	DBPSK, DQPSK, CCK, short PLCP, long PLCP		
Modulation measurements			
Constellation diagram	Constellation diagram		
Constellation diagram per OFDM carrier	-		
I/Q offset and I/Q imbalance	I/Q offset and I/Q imbalance		
Carrier and symbol frequency error	Carrier and symbol frequency error		
Modulation error (EVM) per OFDM carrier or symbol	Modulation error (EVM)		
Amplitude flatness and spectral flatness	-		
CCDF and crest factor	CCDF and crest factor		
Transmit spectrum mask	Spectrum mask (IEEE and ETSI)		
FFT, also across a selected part of the signal, e.g. preamble	FFT		
Payload bit information	Payload bit information header		
Sample size selectable up to 50 ms	Sample size selectable up to 50 ms		
Trigger			
Free run	Free run		
External	External		
IF power	IF power		
Typical inherent errors for IEEE 802.11a measurements	Typical inherent errors for IEEE 802.11b measurements		
EVM –45 dB	EVM 0.7 % (RF = 2.4 GHz)		
Spectral flatness 0.5 dB	-		

WiMAX measurements

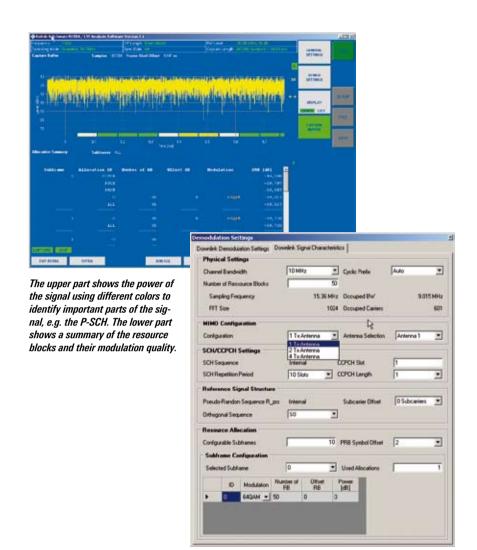
With the R&S®FSO-K93 application firmware, the R&S®FSG spectrum analyzer can be used for spectrum and modulation measurements on signals in line with the IEEE 802.16e-2005 standard, also known as mobile WiMAX. Its functions cover standard-related tests and more in-depth analysis for troubleshooting WiMAX applications. All functions can be operated manually or programmed via GPIB or LAN.

- Standards: IEEE 802.16e-2005, including WiBro
- Support of OFDM and OFDMA
- Modulation formats for IEEE 802.16:
 BPSK, QPSK, 16QAM, 64QAM

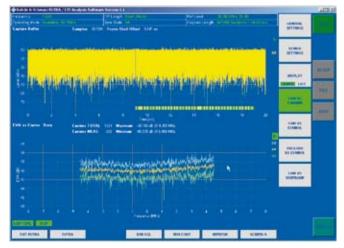
WiMAX measurement result summary.

Constellation diagram with low signalto-noise ratio.

EVM versus carrier of a PUSC signal.


3GPP Long term evolution

With the R&S®FSQ-K100 option, the R&S®FSG can be used for analyzing the modulation accuracy of the emerging 3GPP long term evolution standard. The functionality covers all important parameters required to characterize a transmitter:


- ◆ EVM versus resource block
- EVM versus carriers
- Spectral flatness
- Constellation diagram
- ◆ CCDF

For ease of use, the R&S®FSQ-K100 option supports autodemodulation, which minimizes setup time. The following important configuration possibilities are available:

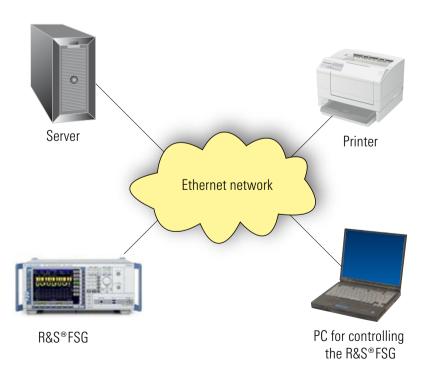
- Demodulation bandwidth allows the user to flexibly change the maximum number of resource blocks
- Antenna configuration makes it possible to correctly demodulate MIMO signals

The EVM versus carrier display shows the EVM for each carrier over the frame. As many measurements are performed for each carrier, the maximum, average, and minimum values are displayed for each of the 600 carriers.

Benefit from networking

Versatile documentation and networking capabilities

The Windows XP operating system coupled with a wide variety of interfaces makes it easy to insert measurement results into documentation. Simply save the screen contents as a BMP or WMF file and import them into your word processing system. To process trace data, save the data as an ASCII file (CSV format), which not only documents trace data but also the main instrument settings.


Advantages of networking

The standard LAN interface opens up versatile networking capabilities:

- Link to standard network (Ethernet 10/100BaseT)
- Running under Windows XP, the R&S®FSG can be configured for network operation. Applications such as data output to a central network printer or saving results on a central server can easily be implemented. The R&S®FSG can thus be optimally matched to your work environment
- Screen contents can be imported directly into Word or, by using an Excel macro, into your documentation programs so that you can immediately create data sheets for your products or documents for quality assurance

Remote control by Ethernet is even simpler:

The LAN eXtensions for Instrumentation (LXI) standard for controlling T&M equipment combines the advantages of rack and stack instruments, which offer GPIB interfaces and powerful firmware functions, with the benefits of modular, compact VXI/PXI systems

The R&S®FSG in network operation.

Ordering information

Designation	Туре	Order No.
Spectrum Analyzer, 9 kHz to 8 GHz	R&S®FSG8	1309.0002.08
Spectrum Analyzer, 9 kHz to 13 GHz	R&S®FSG13	1309.0002.13

Options

Designation	Туре	Order No.
Digital Baseband Interface	R&S®FSU-B17	1163.0063.02
Electronic Attenuator, 0 dB to 30 dB, and 20 dB preamplifier	R&S®FSU-B25	1144.9298.02

For data sheet, see PD 5213.8721.22 and www.rohde-schwarz.com (search term: FSG)

