
ABN 43 064 478 842

231 osborne avenue clayton south, vic 3169
 PO box 1548, clayton south, vic 3169
 t 03 9265 7400 f 03 9558 0875
 freecall 1800 680 680
 www.tmgtestequipment.com.au

Test & Measurement

Complimentary Reference Material

sales
 rentals
 calibration
 repair
 disposal
 This PDF has been made available as a complimentary service for you to assist in evaluating this model for your testing requirements.
 TMG offers a wide range of test equipment solutions, from renting short to long term, buying refurbished and purchasing new. Financing options, such as Financial Rental, and Leasing are also available on application.
 TMG will assist if you are unsure whether this model will suit your requirements.
 Call TMG if you need to organise repair and/or calibrate your unit.
 If you click on the "Click-to-Call" logo below, you can all us for FREE!

Disclaimer:

All trademarks appearing within this PDF are trademarks of their respective owners.

BERTScope[™], BERTScope[™]S, and BERTScope Spg Signal Integrity Instruments

Technical Specifications

The Vision of a Scope, the Confidence of a BERT, and Clock Recovery you can Count on.

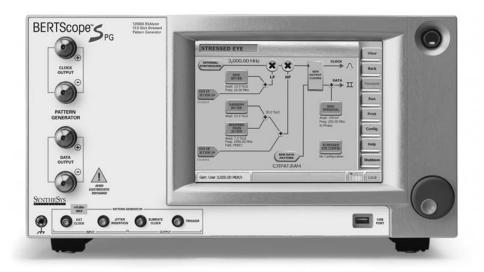
Benefits:

- Integrated Signal Integrity Analyzer using the same acquisition circuitry for time, error and jitter domain measurements, to give "same observer" measurements that tie together for faster troubleshooting of your problem devices
- Unique analysis toolkit gives you unrivaled information quality and depth
- 12.5 Gb/s and 7.5 Gb/s (upgradeable) models will cover your needs as your application bit rates increase

Applications:

- Serial Bus Design
- Semiconductor IC Evaluation
- Jitter Tolerance Compliance Testing
- High Speed Backplane Design
- Optical Transceiver Design and Manufacturing
- Recirculating Fiber Loop Experiments





BERTScope, BERTScope S, and BERTScope Spg Technical Specifications

Contents

Pattern Generator: Data and Clock Outputs Ancillary Interfaces Clock Path Details Stressed Eye Option
Error Detector: Data and Clock Inputs Ancillary Interfaces Rear Panel Interface User Interfaces Lye Diagram Capabilities Physical Layer Test Data Options Litter Tolerance Option
General Specifications15
Ordering Information16

Model	Applicable Pages
BERTScope 12500A, 7500A Signal Integrity Analyzer	Pattern Generator: 3, 4 Error Detector: 7 - 12, 14 General: 15, 16
BERTScope 12500B, 7500B Signal Integrity Analyzer with Stress	All
BERTScope Spg 12500B Stress Pattern Generator	Pattern Generator: 3 - 6 Error Detector: 10 (user interface) General: 15, 16

Pattern Generator

Input/ Output Specifications

CLOCK

OUTPUT

PATTERN

GENERATOR

DATA

OUTPUT

BERTScope^{*}

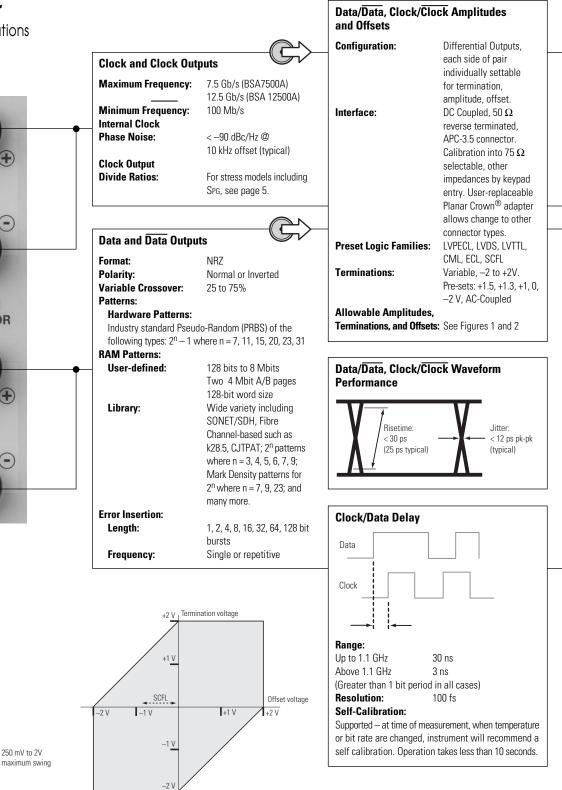
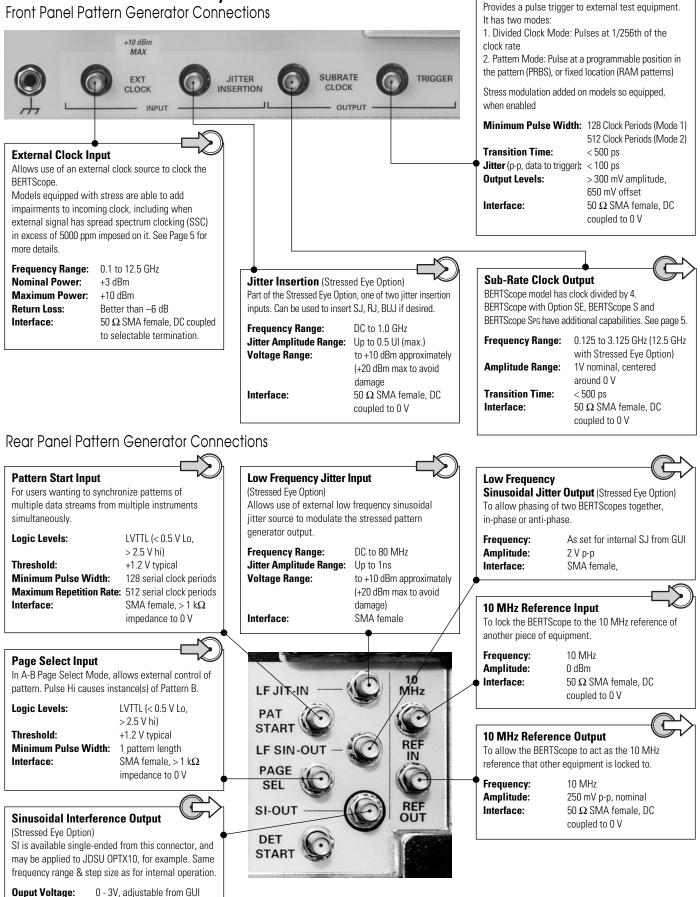


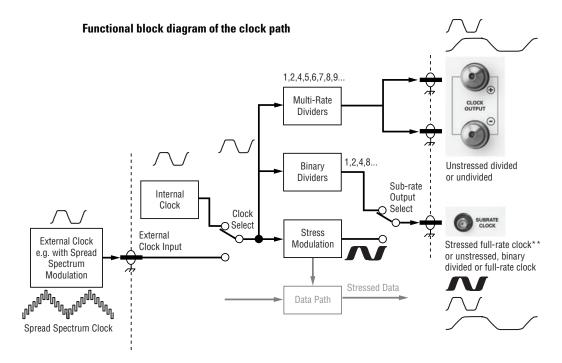
Figure 1. Amplitude range.


Figure 2. Allowable combinations of termination and offset. Amplitude swings between 0.25 and 2 V allowed; should fit inside shaded area of graph. For example, SCFL uses a 0 V termination, and operates between approximately 0 and -0.9 V; as shown with dotted arrow, it falls within the operating range.

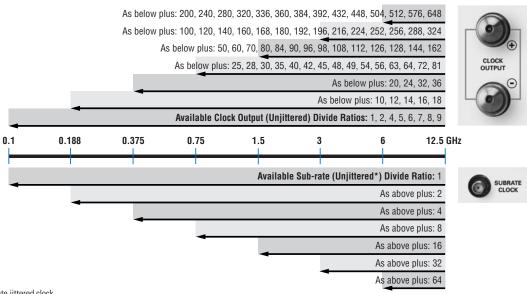
Planar Crown[®] is a registered trademark of Aeroflex/Weinschel, www.aeroflex-weinschel.com

Trigger Output

Pattern Generator Ancillary Connections


Interface:

50 Ω SMA female



New Clocking For Models With Stress Capability

Models with stress (BERTScope with Option SE fitted, BERTScope S, and BERTScope SPG) have a number of new capabilities to give clock flexibility. These include the ability to stress an external clock, take incoming SSC, and output a wide variety of sub-rate clocks.

Available divide ratios from clock-related output, by bit rate, using the internal clock[†]

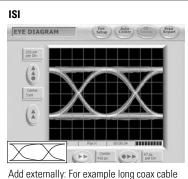
* This output can also provide a full-rate jittered clock.

- † All listed ratios available for an external clock input over entire bit-rate range, limitations for internal clock only.
- ** Stress may be added to an external clock on appropriate models. Stress operating range is from 1.45 to 11.2 Gb/s. External clock must have a duty cycle of $50\% \pm 2\%$.

BERTScope

Gb/s Signal Analysis

Pattern Generator Stressed Eye


Generator Option

- Flexible, integrated stressed eye impairment addition to the internal or an external clock
- · Easy set-up, with complexity hidden from the user with no loss of flexibility
- Verify compliance to multiple standards using the BERTScope and external ISI filters. Standards such as:
 - OIF CEI
 - Serial-ATA II
 - PCI-Express
 - XFI
- · Sinusoidal interference may be inserted in phase or in anti-phase, or sent externally to a JDSU OPTX10 optical reference transmitter for the creation of 10 Gigabit Ethernet-compliant stressed eyes for receiver jitter tolerance testing
- · Sinusoidal jitter may be locked between two BERTScopes in phase or anti-phase, as required by OIF CEI

Flexible External Jitter Interfaces:

- Front Panel External High Frequency Jitter Input Connector Jitter from DC to 1.0 GHz up to 0.5 UI (max.) may be added, of any type that keeps with amplitude and frequency boundaries
- Rear Panel External SJ Low Frequency Jitter Input Connector Jitter from DC to 80 MHz up to 1ns (max) may be added
- · Rear Panel SJ Output
- Sinusoidal Interference Output rear panel connector

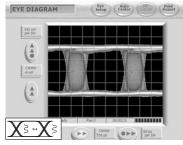

Amplitude & ISI Impairments

length, or Bessel-Thompson 4th Order Filter with -3 dB point at 0.75 of Bit Rate etc.

For applications requiring circuit board dispersion, the BERTScope differential ISI accessory may be used.

Sinusoidal Interference

- 100 MHz to 2.5 GHz
- Adjustable in 100 kHz steps
- Adjustable from 0 to 400 mV
- Common mode or differential
- Available from rear panel 50 Ω SMA connector, single-ended with data amplitude from 0 to 3 V adjustable from GUI, same frequency range and step size as internal adjustment

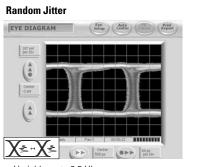

Jitter Impairments


Bounded Uncorrelated Jitter EYE DIAGRAM Eye (1 ▓⊣▓≩ Center OFF (6 ps

- Internal PRBS Generator PN-7
- Variable up to 0.5 UI
- 100 Mb/s to 2.0 Gb/s
- · Band limited by selected filters see table below:

BUJ Rate	Filter (MHz)
100 to 499	25
500 to 999	50
1,000 to 1,999	100
2,000	200

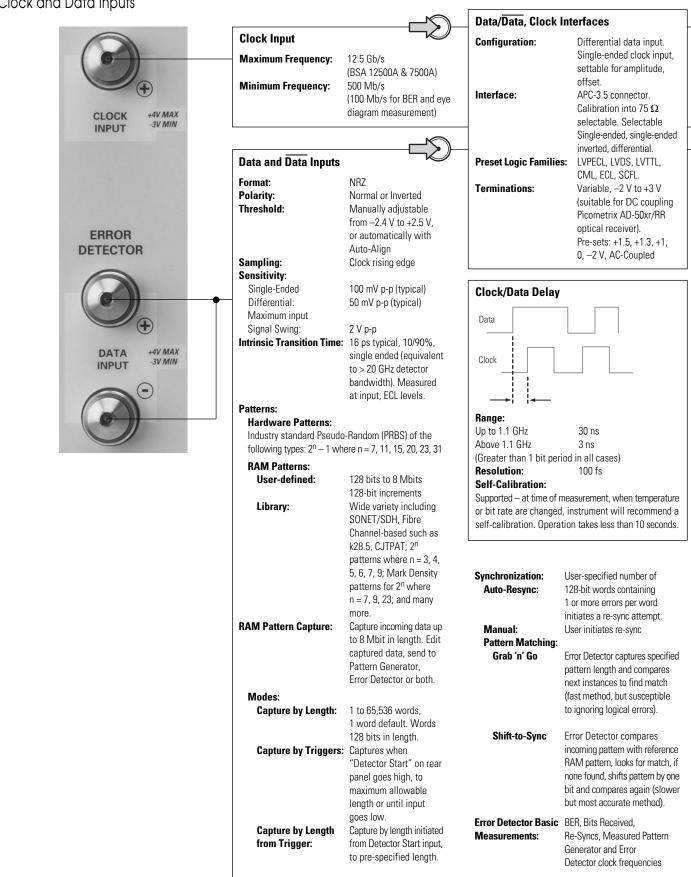
Sinusoidal Jitter



Notes: Specified for data rates from 1.45 Gb/s to 11.2 Gb/s. Usable with limited performance to 622 Mb/s.

Internal RJ, BUJ, and external high frequency jitter input limited to 0.5 UI, combined.

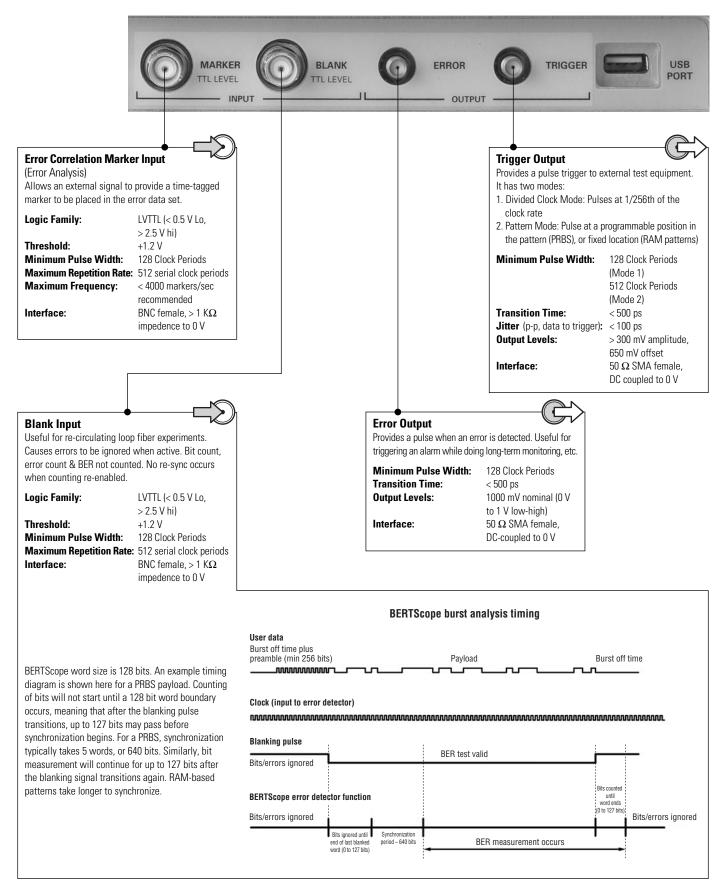
Rear panel low frequency jitter input can be used to impose additional jitter; SJ and external jitter sum total cannot exceed jitter magnitude limits given for SJ below.


- · Variable up to 0.5 UI
- Band limited 10 MHz to 1 GHz
- Crest factor of 16 (Gaussian to at least 8
- standard deviation or $\sim 1 \times 10^{-16}$ probability)

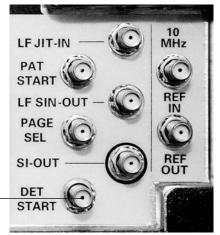
Data Rate	Internal SJ Frequency Range		
	1kHz to 10 MHz	10 MHz to 80 MHz	
10.3125 Gb/s	10.3 UI	2.1 UI	
9.9545 Gb/s	10.0 UI	2.0 UI	
8.5 Gb/s	8.5 UI	1.7 UI	
6.25 Gb/s	6.3 UI	1.3 UI	
6 Gb/s	6.0 UI	1.2 UI	
5 Gb/s	5.0 UI	1.0 UI	
4.25 Gb/s	4.3 UI	0.9 UI	
3.125 Gb/s	3.1 UI	0.6 UI	
3 Gb/s	3.0 UI	0.6 UI	
2.5 Gb/s	2.5 UI	0.5 UI	
2.4883 Gb/s	2.5 UI	0.5 UI	
2.125 Gb/s	2.1 UI	0.4 UI	
1.5 Gb/s	1.5 UI	0.3 UI	

BERTScope

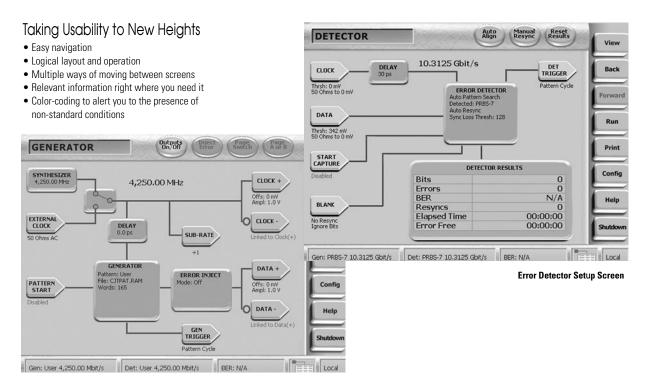
Error Detector


Clock and Data Inputs

Error Detector Ancillary Connections


Front Panel Error Detector Connections

BERTScope" 12.5 Gb/s Signal Analysis

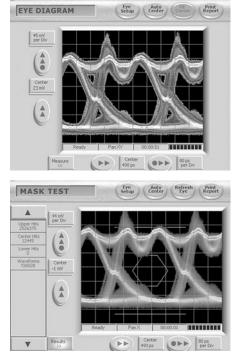

Rear Panel Error Detector Connections

Detector Start Input Used to trigger the acquisitio the Error Detector reference level starts capture.	8
Amplitude: Threshold: Minimum Pulse Width: Maximum Repetition Rate: Interface:	$ \begin{array}{l} \text{LVTTL (< 0.5 V Lo,} \\ > 2.5 V \text{ hi}) \\ +1.2 V \\ 128 \text{ serial clock periods} \\ 512 \text{ serial clock periods} \\ \text{SMA female, > 1k} \\ \text{impedance to 0 V} \end{array} $
(Not present for BE	RTScope Spg)

BERTScope" 12.5 Gb/s Signal Analysis

User Interfaces

Pattern Generator Set-Up Screen

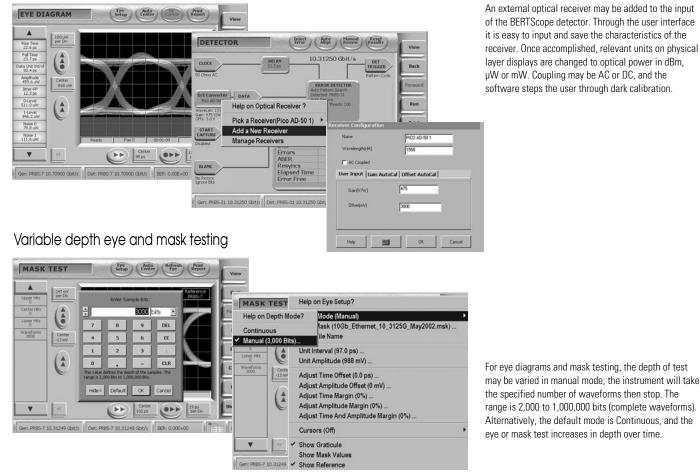

	R n - D:\BitAløzer\	UserPatter	le Edit Send Option				
% Imported R ASSIGN WIDTH % 0x3eaa2aaaa 0xa6a5a987 0x71e3871e	AM file 32 0xaa3eaa2a 0x3eaa2aaa 0x1e3871e3 0x3871e387	0xaaaa 0xaa3e; 0x871e: 0x1e387	New Open Save	Enter D	etector RAM		Length: words 💌
0xe3871e38 0x871e3871 0x1e3871e3 0x3871e387 0x71e3871e 0xe3871e38 0x871e3871 0x1e3871e3	0x71e3871e 0xe3871e38 0x871e3871 0x1e3871e3 0x3871e387 0x71e3871e 0xe3871e387 0x871e3871	0x38714 0x71e38 0xe3871e3 0x871e3 0x1e387 0x38714 0x71e38 0xe3871	Save As Close Print	7	8	9 6	DEL
0×3871e387 0×71e3871e 0×e3871e38 0×871e3870 0×aaaaaaaa 0×aaaaaaaa 0×aaaaaaaa	0x1e3871e3 0x3871e387 0x71e3871e 0xbc78f4aa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaaa	0x871e3 0x1e387 0x3871e 0xaaaaa 0xaaaaa 0xaaaaa 0xaaaaa	Check Syntax	1	2	3	:
0xaaaaaaaa 0xab9c9686 0xaa2aaaaa 0x2aaaaa3e	Oxaaaaaaaa Oxe6c16aaa Ox3eaa2aaa Oxaa2aaaaa	0x5555e 0x9aa63 0xaa3ee 0x3eaae 5 words	Capture by Length Capture by Triggers Capture by Length when Triggered 7 10.3123 GBT(3) BER 0.006400	Detector RA words. The	efines how mu M. The range word size is 12 Default	is 1 words to	

Editor Screen

- Used for pattern editing of standard and AB Page Select patterns, also mask editing
- Views in Binary, Decimal or Hexadecimal
- Support for variable assignments, repeat loops, seeding of PRBS patterns
- Capture and editing of incoming data for example, to make a repeating pattern out of real-world traffic
 - Capture is available by trigger, by length or by length following a trigger
 - Capture is by number or words, 1 word is 128 bits. For example, a PRBS-7 (127 bits long) would be captured as 127 words, and would have overall length of 16,256 bits.

BERTScope Built-In Parametric **Measurements**

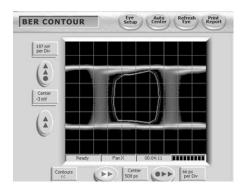
All BERTScopes come with Eye Diagrams and Mask Test capabilities as standard, along with Error Analysis.


Eye Diagram

- 280x350 pixel waveform display
- Deep acquisition
- Automatic Measurements include:
 - Rise Time
- Fall Time
- Unit Interval (Data, and also Clock)
- · Eye Amplitude
- Noise Level of 1 or 0
- Eye Width
- Eye Height
- Eye Jitter (p-p and RMS)
- 0 Level, 1 Level
- Extinction Ratio
- Vertical Eye Closure Penalty (VECP)
- Dark Calibration
- Signal-to-Noise Ratio
- Vp-p, Vmax, Vmin, Crossing Levels
- Rising and Falling Crossing Level (picoseconds)
- Overshoot 0 level and 1 level

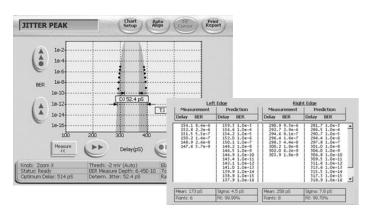
Mask Testing

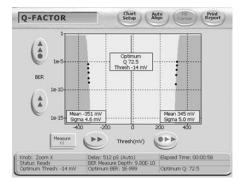
- Library of standard masks e.g. XFP, or edit custom masks
- Addition of positive or negative mask margin
- Import of measured BER Contour to become process control mask
- At least 1000x the sample depth of traditional sampling oscilloscope masks is ideal for ensuring the absence of rare event phenomena


Optical units

For eye diagrams and mask testing, the depth of test may be varied in manual mode; the instrument will take the specified number of waveforms then stop. The range is 2,000 to 1,000,000 bits (complete waveforms). Alternatively, the default mode is Continuous, and the eye or mask test increases in depth over time.

Physical Layer Test Option

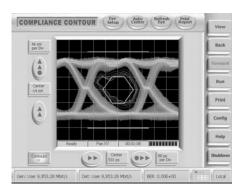



BER Contour Testing

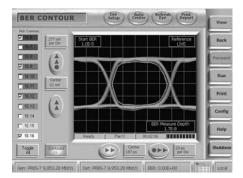
- Executed with same acquisition circuitry as Eye Diagram measurements for maximum correlation
- As-needed delay-calibration for accurate points
- Automatic scaling, one button measurement
- Extrapolates contours from measured data, increasing measurement depth with run-time and repeatedly updating curve-fits
- Easy export of fitted data in CSV format
- Contours available from 10⁻⁶ to 10⁻¹⁶ in decade steps

Jitter Measurements

- Testing to T11.2 MJSQ BERTScan methodology (also called 'Bathtub Jitter')
- Deep measurements for quick and accurate extrapolation of Total Jitter at user-specified level, or direct measurement
- Separation of Random and Deterministic components, as defined in MJSQ
- As-needed delay-calibration for accurate points
- Easy export of points in CSV format
- Easy one-button measurement
- · User-specified amplitude threshold level, or automatic selection
- Selectable starting BER to increase accuracy when using long patterns, as defined in MJSQ



Q Factor Measurement


- One-button measurement of a vertical cross-section through the middle of the eye
- Easy visualization of system noise effects
- Export of data in CSV format

Compliance Contour

- Validation of transmitter eye performance to standards such as XFP/XFI and OIF CEI
- Overlay compliance masks onto measured BER contours and easily see whether devices pass the BER performance level specified

Live Data Analysis Option

The live data option is designed to measure parametric performance of traffic that is either unknown or non-repeating. This can include traffic with idle bits inserted such as in systems with clock rate matching. It is also suitable for probing line cards, etc.

The option uses one of the two front-end decision circuits to decide whether each bit is a one or zero by placing it in the center of the eye. The other is then used to probe the periphery of the eye to judge parametric performance. This method is powerful for physical layer problems, but will not identify logical problems due to protocol issues, where a zero was sent when it was intended to be a one.

Live data measurements can be made using BER Contour, Jitter Peak, Q Factor. Eye diagram measurements can be made on live data without the use of this option, providing a synchronous clock is available.

The Live Data Analysis option requires the Physical Layer Test Option.

BERTScope

12.5 Gb/s Signal Analysis

28.032.399.008

PRBS-15

0.00.15

OFF

RER: No Svo

....

101000111100100010

Chart Auto FR Setup Center Cursor

Play from File ...

Back

Back

BASIC BE

STRIP CHART

10

18-

Durst Put

Det: No Clock

10.312.54 Mbit Det: PRBS-7 10.312.54 Mbit/s EER: 2.13E-0

**

PATTERN SENSITIVITY

178

4

(

.

Total Bits Total Errors

Non-Burst Related Total Bit Error Rate (BER) Burst Related Non-Burst Related Burst Events

rkers uelch Events

Error Analysis

Error analysis is a powerful series of views that associate error occurrences so that underlying patterns can be easily seen. It is easy to focus in on a particular part of an eye diagram, move the sampling point of the BERTScope there, and then probe the pattern sensitivity occurring at that precise location. For example, it is straightforward to examine which patterns are responsible for late or early edges.

Many views come standard with the BERTScope family.

Analysis Views

- Error Statistics: A tabular display of bit and burst error counts and rates.
- Strip Chart: A strip chart graph of bit and burst error rates.
- **Burst Length:** A histogram of the number of occurrences of errors of different lengths.
- Error Free Interval: A histogram of the number of occurrences of different error free intervals.
- Correlation: A histogram showing how error locations correlate to user-set block sizes or external Marker signal inputs.
- Pattern Sensitivity: A histogram of the number of errors at each position of the bit sequence used as the test pattern.
- Block Errors: A histogram showing the number of occurrences of data intervals (of a user-set block size) with varying numbers of errors in them.

Error Location Capture

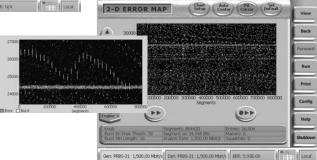
Live Analysis Error Logging Capacity Error Events/Second Maximum Burst Length Continuous Max. 2 GB file size 10,000 32 kbits

Error Analysis Options

Forward Error Correction Emulation

Because of the patented error location ability of the BERTScope, it knows exactly where each error occurs during a test. By emulating the memory blocks typical of block error correcting codes such as Reed-Solomon architectures, bit error rate data from uncorrected data channels can be passed through hypothetical error correctors to find out what a proposed FEC approach would yield. Users can set up error correction strengths, interleave depths, and erasure capabilities to match popular hardware correction architectures.

Current Interval	TOTAL ACCUMULATION	Processing	-
Current interval	TO THE PIECE PIECE	Processing	Back
Total Accumulation	Before FEC	After FEC	
Error Count	75.114	18.445	Forwar
Error Rate	2.685-06	7.026-07	10000
Bit Count	28.032.398.880	26,273,503,264	
Data Rate	1,500.00 Mbit/s	1,405.98 Mbit/s	Run
Inner-Code Status (blocks) Outer-Code Status (blocks) alysis ine a	437 6,642 0	15,463 0 0	Config
ERROR ERROR	ERROR ANAL FILTER ANAL		Help
topped Example.uer (175 kB)	FEC Enabled Unknown	n Pattern	Station


Error Statistics View showing link performance in terms of bit and burst occurrences.

Viewing bit and burst error performance over time. This can useful while temperature cycling as part of troubleshooting, for example.

Pattern Sensitivity is a powerful way of examining whether error events are pattern related. It shows which pattern sequences are the most problematic, and operates on PRBS and user-defined patterns.

2-D Error Mapping

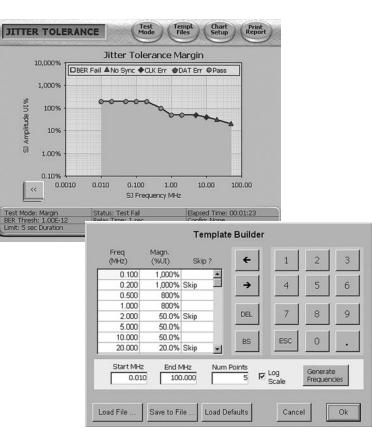
This analysis creates a two-dimensional image of error locations from errors found during the test. Error mapping based on packet size or multiplexer width can show if errors are more prone to particular locations in the packet or particular bits in the parallel bus connected to the multiplexer. This visual tool allows for human eye correlation, which can often illuminate error correlations that are otherwise very difficult to find-even with all the other error analysis techniques.

Jitter Tolerance Template Option

Many standards call for SJ to be stepped through a template with different SJ amplitudes at particular modulation frequencies. This is easy with the built in Jitter Tolerance function which automatically steps through a template that you designed, or one of the many standard templates in the library.

This functionality is standard on BERTScope B models, and is an upgrade software option for customers who already own BERTScopes with stress. It is not available for the SPG model.

Standard Library of Templates

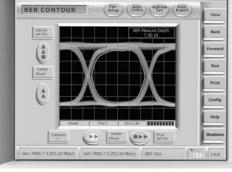

- 10 GBASE LX4 802.3ae 3.125Gb/s
- 10 GbE 802.3ae 10.3125Gb/s
- OIF CEI 11G Datacom Rx Ingress (D) 11Gb/s
- OIF CEI 11G Telecom Rx Egress (Re) 11Gb/s
- OIF CEI 11G Telecom Rx Ingress (Ri) 11Gb/s
- OIF CEI 11G Total Wander 11.1Gb/s
- OIF CEI 11G Total Wander 9.95Gb/s
- OIF CEI 6G Total Wander 4.976Gb/s
- OIF CEI 6G Total Wander 6.375Gb/s
- Fully Buffered DIMM 3.2Gb/s
- Fully Buffered DIMM 4.0Gb/s
- Fully Buffered DIMM 4.8Gb/s
- Fibre Channel 1.0625Gb/s
- Fibre Channel 2.125Gb/s
- Fibre Channel 4.25Gb/s
- Serial Attached SCSI 1.5Gb/s
- Serial Attached SCSI 3.0Gb/s
- XAUI 3.125Gb/s
- XFI ASIC Rx Input Datacom (D) 10.3125Gb/s
- XFI ASIC Rx Input Datacom (D) 10.519Gb/s
- XFI ASIC Rx Input Telecom (D) 10.70Gb/s
- XFI ASIC Rx Input Telecom (D) 9.95328Gb/s
- XFI Host Rx Input Datacom (C) 10.3125Gb/s
- XFI Host Rx Input Datacom (C) 10.519Gb/s
- XFI Host Rx Input Telecom (C) 10.70Gb/s
- XFI Host Rx Input Telecom (C) 9.95328Gb/s
- XFI Module Tx Input Datacom (B') 10.3125Gb/s
- XFI Module Tx Input Datacom (B') 10.519Gb/s
- XFI Module Tx Input Telecom (B') 10.515(b)/s
 XFI Module Tx Input Telecom (B') 10.70Gb/s
- XFI Module TX Input Telecom (B') 9.95328Gb/s
 XFI Module TX Input Telecom (B') 9.95328Gb/s

Some of the areas of adjustment include:

- BER confidence level
- Test duration per point
- BER threshold
- Test device relaxation time
- Imposition of percentage margin onto template

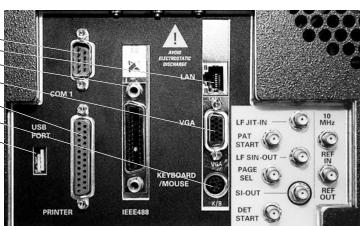
Test precision

Also included is the ability to test beyond the template to device failure at each chosen point, and the ability to export data either as screen images or CSV files.

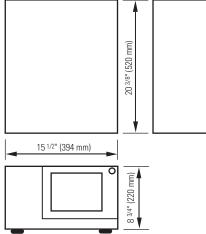


BERTScope^m 12.5 Gb/s Signal Analysis

General


PC-Related:

Display:	TFT Touch Screen
	640 x 480 VGA
Touch Sensor:	Analog Resistive
Processor:	1 GHz Pentium or
	equivalent
Hard Disk:	20 GB or greater
DRAM:	256 MB
Operating System:	Windows 2000
Remote Control:	IEEE-488 (GPIB) or TCP/IP
Sunnorted Interfaces:	


rted Interfaces:

Serial (RS-232) —	
RJ-45 Ethernet) —	Network (100 Base-T
IEEE-488 (GPIB)	
itor (DB-15 VGA) 🔶	Mon
r Port (Centronix) 🖯	Printer
Keyboard (Micro)	k
Mouse (PS/2)	
nel, 1 rear panel) 듰	USB 1.0 (1 front par

Physical:

•		
Power: Voltage: Weight: Dimensions:	< 400 Watts 90 to 240 V AC, 50 to 60 Hz 55 lbs (25 kg) 8 ³ / ₄ " (H) x 15 ¹ / ₂ " (W) x 20 ³ / ₈ " (D)	
Environmental:		
Warm-up time: Operating	20 minutes	
Temperature Range: Humidity:	10 to 40 °C Non-condensing at 40 °C, 15 to 95%	
Certifications:	EU EMC Directive (CE-Marked) UL: Underwriters Labs (US) certification CSA (Canada)	
Support: Period:	1 year (extendable to 3 years	
Coverage:	with orderable option) Hardware repair or replacement, at SyntheSys Research's discretion. Also covers software updates. Repairs performed at the Menlo Park, California, USA facility.	(
Calibration interval	1 year	

NOTES

Rise times are measured 20% to 80% unless otherwise stated. Specifications are following a 20 minute warm-up period. Specifications subject to change.

BERTScope[™] 12.5 Gb/s Signal Analysis

www.bertscope.com

BERTScope Products

	BERTScope Model				
	7500A	S 7500B	12500A	S 12500B	SPG 12500B
	Generator &	Stress	Generator &	Stress	Stress
	Analyzer	Generator &	Analyzer	Generator &	Generator
		Analyzer		Analyzer	
Features					
Maximum Bit Rate	7.5Gb/s	7.5Gb/s	12.5Gb/s	12.5Gb/s	12.5Gb/s
Flexible Pattern Generation	~	~	~	~	~
BER Measurement	~	~	~	 ✓ 	-
Eye Diagram, Mask Testing	~	~	~	 ✓ 	-
BER Contour, Jitter Peak, Compliance Contour		~		 ✓ 	-
Stress Insertion for Jitter Tolerance Receiver Testing		~	~		 ✓
Ability to stress an external clock		 ✓ 	 ✓ 		~
Many Subrate Clock Output Divide Ratios		 ✓ 	 ✓ 		~
Jitter Tolerance Templates		v		v	
Options					
Option PL - Physical Layer Test Suite: BER Contour, Jitter Peak,	Option	v	Option	~	
Compliance Contour	Uption	V	Uption	V	-
Option JTOL - Jitter Tolerance Template Testing with library of		10-4		A mandal and an	
common SJ Templates and Margin Test to Failure feature		(Software upgrad	le option for BERTScope S	A model owners)	
Option LDA - Live Data Analysis	Option	Option	Option	Option	-
Option ECC - Error correction coding analysis of error location	Onting		Onting		
data. Emulates ECC algorithms for 1-D, 2-D correctors	Option	~	Option	~	-
Option MAP - Error mapping analysis of error location data. Error	Option	×	Option	~	
mapping visualizes errors in a 2-D map using axis dividers	υριιση	~	υρτισπ	v	-
Option RACK - Rackmount Hardware. Kit includes all mounting					
brackets, slides and hardware necessary to mount a BERTScope	Option	Option	Option	Option	Option
into a standard 19" rack. Slides are adjustable for rack rails 17.5 to					
Option 3YR - Extended warranty. Adds two years to the standard	Ontion	Ontion	Ontion	Ontion	Ontica
one-year product warranty	Option	Option	Option	Option	Option
Option CAL - Calibration certificate	Option	Option	Option	Option	Option
BERTScope Upgrades - BERTScope 12500 xxxx unless otherwise stated					
7500A to S 7500B (BERTScope 7500 A2B)	Option A2B				
7500A to 12500A					
S 7500B to S 12500B	Option UP				
7500A to S 12500B	Option UPS				
S 7500A to S 12500B	59000 01 0	Option SUPS			
12500A to \$ 12500B		0,00,00,0	Option A2B		
S 12500A to S 12500B			0,000,0020	Option SA2B	
SPG to S 12500B				000000000	Option PG2B

🖌 - Standard feature

– - Not Available

Option - Available by adding the listed option

For more information on this and other products:

- BERTScope[™] and BERTScope[™] S Signal Integrity Analyzers Technical Specifications, SR-DS014
- BERTScope[™] SPG Product Brief, SR-DS019
- BERTScope™ Differential ISI Board Product Brief, SR-DS018
- BERTScope™ CR Clock Recovery Instrument Product Brief, SR-DS016

Application information:

- Stressed Eye Know what you are testing with, January 2006
- Constructing a 10 GbE Optical Fibre Channel Stressed Eye, January 2006
- Constructing a 4x FC Optical Stressed Eye, January 2006
- Testing the High Speed Electrical Specifications of an
- XFP Transceiver, July 2006 • Evaluating Stress Components Using BER-Based Jitter
- Evaluating Stress components Using BEH-Based Jitter Measurements, September 2005

3475-D Edison Way Menlo Park, CA 94025 U.S.A. Voice 650 364-1853 Fax 650 364-5716 info@synthesysresearch.com www.synthesysresearch.com BERTScope is a trademark, and BitAlyzer and Error Location Analysis are registered trademarks of SyntheSys Research, Incorporated. U.S. and International patents granted and pending. Windows is a registered trademark of Microsoft Corporation.

Copyright © 2005-2006 SyntheSys Research, Inc.. All rights reserved. Printed in USA. Specifications subject to change.

SR-DS014 180CT06