(3) 231 osborne avenue clayton south, vic 3169 PO box 1548, clayton south, vic 3169 t 0392657400 f 0395580875
freecall 1800680680
www.tmgtestequipment.com.au

Test \&

Measurement
\geqslant sales
\geqslant rentals
\geqslant calibration
\geqslant repair
\geqslant disposal

Complimentary Reference Material

This PDF has been made available as a complimentary service for you to assist in evaluating this model for your testing requirements.

TMG offers a wide range of test equipment solutions, from renting short to long term, buying refurbished and purchasing new. Financing options, such as Financial Rental, and Leasing are also available on application.

TMG will assist if you are unsure whether this model will suit your requirements.
Call TMG if you need to organise repair and/or calibrate your unit.
If you click on the "Click-to-Call" logo below, you can all us for FREE!

Disclaimer:

All trademarks appearing within this PDF are trademarks of their respective owners.

VHF/UHF Antennas

EMS Antenna R\&S ${ }^{\oplus}$ HL 046

80 MHz to 1300 MHz

Log-periodic antenna for
EMS measurements

Features

- High antenna gain, i.e. Iow amplifier power required
- Only one antenna required to cover a wide frequency range
- Uniform object irradiation due to optimized radiation patterns
- Reduced influence of test chamber
- Wall mounting possible
-Small size

Brief description

The R\&S ${ }^{\circledR}$ HLO46 for EMS measurements consists of two log-periodic antennas arranged in a V-shape and connected in parallel. Due to this construction, high selectivity is obtained in the H plane and the radiation patterns are almost rotation-symmetrical.

The small size and the wide frequency range make the antenna suitable for use in test chambers.

Antenna model .02 is mounted on a trolley whose height can be continuously adjusted between approx. 1 m and 1.75 m above ground (model . 03 is without trolley). Polarization is manually set. Pneumatic actuators can optionally be provided.

Specifications

Frequency range	80 MHz to 1.3 GHz
Polarization	linear
Input impedance	50Ω
VSWR	<2
Max. input power $\left(T_{A}=+40^{\circ} \mathrm{C}\right)$	
80 MHz	$1000 \mathrm{~W}+100 \% \mathrm{AM}$
500 MHz	$500 \mathrm{~W}+100 \% \mathrm{AM}$
1 GHz	$300 \mathrm{~W}+100 \% \mathrm{AM}$
1.3 GHz	$250 \mathrm{~W}+100 \% \mathrm{AM}$
Gain	typ. $>7 \mathrm{dBi}$
Front-to-back ratio	typ. $>20 \mathrm{~dB}$
Polarization decoupling	typ. 20 dB

Connector	N female
Class of application	laboratory
MTBF	$>100000 \mathrm{~h}$
Operating	
temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{L}$)	
Without trolley	approx. $0.85 \mathrm{~m} \times 1.57 \mathrm{~m} \times 1.75 \mathrm{~m}$
With trolley	approx. $0.86 \mathrm{~m} \times 1.90 \mathrm{~m}$ (variable up to
Weight	$2.60 \mathrm{~m}) \times 1.85 \mathrm{~m}$
Without trolley	approx. 12.5 kg
With trolley	approx. 22.5 kg

Ordering information

