

ABN 43 064 478 842

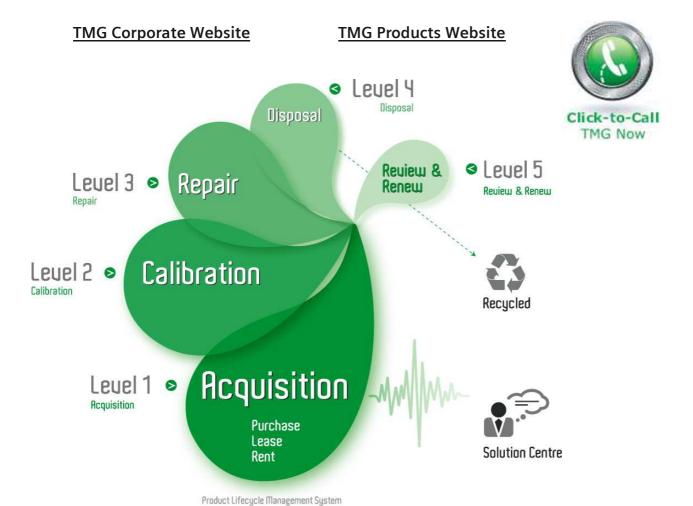
231 osborne avenue clayton south, vic 3169
 PO box 1548, clayton south, vic 3169
 t 03 9265 7400 f 03 9558 0875
 freecall 1800 680 680

www.tmgtestequipment.com.au

Test & Measurement

- sales
- rentals
- calibration
- repair
- disposal

Complimentary Reference Material


This PDF has been made available as a complimentary service for you to assist in evaluating this model for your testing requirements.

TMG offers a wide range of test equipment solutions, from renting short to long term, buying refurbished and purchasing new. Financing options, such as Financial Rental, and Leasing are also available on application.

TMG will assist if you are unsure whether this model will suit your requirements.

Call TMG if you need to organise repair and/or calibrate your unit.

If you click on the "Click-to-Call" logo below, you can all us for FREE!

Disclaimer:

All trademarks appearing within this PDF are trademarks of their respective owners.

Electrical Sampling Modules

▶ 80E10 • 80E09 • 80E08 • 80E07 • 80E06 • 80E04 • 80E03 • 80E02 • 80E01

TDR Modules: 80E10, 80E08 and 80E04

The 80E10, 80E08 and 80E04 are dualchannel Time Domain Reflectometry (TDR) sampling modules, providing up to 12 ps incident and 15 ps reflected rise time in the 80E10 (18 ps incident in 80E08 and 23 ps incident in 80E04). Each channel of these modules is capable of generating a fast step for use in TDR mode and the acquisition portion of the sampling module monitors the incident step and any reflected energy. The polarity of each channel's step can be selected independently. This allows for differential or common-mode TDR or S-parameters testing of two coupled lines, in addition to the independent testing of isolated lines. The independent step generation for each channel allows true differential measurements, which ensures measurement accuracy for differential devices.

The 80E10 and 80E08 are small formfactor, fully integrated, independent, 2-meter remote sampler systems, enabling location of the sampler near the DUT and ensuring the best signal fidelity. An optional 2-meter extender is available for 80E04. The modules characterize crosstalk by using TDR steps to drive one line (or line pair for differential crosstalk) while monitoring a second line (or line pair) with the other channel (or another module for differential crosstalk). The "filter" function on the 8200 and 8000 series mainframes can be used with TDR or crosstalk measurements to characterize expected system performance with slower edge rates.

Features & Benefits

All Modules

Up to 70 GHz Bandwidth and 5 ps Measured Rise Time (10 to 90%)

Lowest Noise for Analysis – 450 μV_{RMS} at 60 GHz, 300 μV_{RMS} at 30 GHz

Remote Samplers*1 Enable Location of Sampler Near DUT and Ensure Best Signal Fidelity

Independent Sampler Deskew Ensures Easy Fixture and Probe De-embedding

Dual Channel (Except 80E01 and 80E06)

Precision Microwave Connectors (3.5 mm, 2.92 mm, 2.4 mm and 1.85 mm)

Probe Support (Except 80E06)

TDR Modules

15 ps Reflected True Differential Fully Integrated TDR Rise Time (12 ps Incident) and Feature Resolution below 1 mm

Efficient, Accurate, Easy-to-Use and Cost-effective S-parameters up to 50 GHz

Applications

Impedance Characterization and S-parameter Measurements for Serial Data Applications

Advanced Jitter, Noise and BER Analysis

Channel and Eye Diagram Simulation and Measurementbased Spice Modeling

80E10, 80E08 and 80E04

High-performance TDR/T Measurements

Impedance Profile, Inductance, Capacitance and S-parameters

Transmission Line Quality Impedance and Crosstalk

True Differential, Common Mode and Single-ended Measurements

Efficient Fault Isolation

80E09, 80E07, 80E06, 80E01

High-frequency, Low-noise Signal Acquisition

Fast Rise Time Measurements

Jitter Analysis and Waveform Analysis

80E03 and 80E02

Device Characterization, Transmission Quality, Waveform Parameters

Low Signal Measurements

^{*1} Integrated on 80E07-80E10 and optional on 80E01-80E04 and 80E06.

All modules have independent incident step and receiver deskew to remove the effect of measurement fixtures and probes that enable faster and easier de-embedding of test fixtures. The 80E10 sampling modules provide an acquisition rise time of 7 ps, with up to 50 GHz user-selectable equivalent bandwidth (with 50, 40 and 30 GHz settings). The 80E08 sampling bandwidth is 30 GHz (user-selectable with 30 and 20 GHz settings), and 80E04 sampling bandwidth is 20 GHz. The 20 GHz P8018 single-ended and 18 GHz P80318 differential variable pitch TDR probes provide excellent performance and compliance, ensuring easy and accurate backplane and package measurements.

When the user employs these modules with Tektronix IConnect® TDR and VNA software, he or she can acquire up to 1,000,000 data points and obtain up to 50 GHz differential, mixed-mode and single-ended S-parameters. IConnect also enables impedance, S-parameters and eye diagram compliance testing as required by various serial data standards, as well as full channel analysis, Touchstone (SnP) file output and SPICE modeling for gigabit interconnects.

Sampling Modules: 80E09, 80E07, 80E06, 80E03, 80E02 and 80E01

The 80E09 and 80E07 are dual-channel modules with remote samplers, capable of 450 μ V_{RMS} noise at 60 GHz sampling bandwidth and 300 μ V at 30 GHz sampling bandwidth. Each small form-factor remote sampler is attached to a 2-meter cable in order to minimize the effects of cables, probes and fixtures, allow close location of the sampler to the DUT and ensure best signal fidelity. User-selectable bandwidth settings (60/40/30 on 80E09 and 30/20 on 80E07) offer optimal noise/bandwidth trade-off.

80E06 and 80E01 are single-channel, 70+ and 50 GHz bandwidth sampling modules. 80E06 provides the widest measurement bandwidth and fastest rise time measurements with world-class signal fidelity. Both 80E06 and 80E01 provide a superior maximum operating range of ±1.6 V. Both of these modules can be used with the optional 2-meter extender cable, which ensures superior signal fidelity and measurement flexibility.

The 80E03 and 80E02 are dual-channel, 20 GHz and 12.5 GHz sampling modules. These sampling modules provide an acquisition rise time of 17.5 ps or less for 80E03 and 28 ps for 80E02. An optional 2-meter extender cable is available for these modules.

When used with Tektronix 80SJNB Jitter, Noise and BER software, these modules enable separation of both jitter and noise into their components, understand precise causes of eye closure and obtain highly accurate extrapolation of BER and 3-D eye contour. When used with 82A04 phase reference module, timebase accuracy can be improved down to 200 fs_{RMS} jitter, which together with the 300 μ V noise floor and 14-Bits of resolution ensures the highest signal fidelity for the measured signals.

► Characteristics

► Electrical Sampling Module Characteristics

	. •				
	Application Type	Channels	Input Impedance	Channel Input Connector	Bandwidth*2
80E10	True differential TDR, S-parameters and fault isolation	2	50 ±1.0 Ω	1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination	50/40/30 GHz* ^{3, *4}
80E09	High-frequency, low-noise signal acquisition and jitter characterization	2	50 ±1.0 Ω	1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination	60/40/30 GHz* ^{3,*4}
80E08	True differential TDR and S-parameters	2	50 ±1.0 Ω	2.92 mm female	30/20 GHz* ^{3, *4}
80E07	Optimal noise/performance trade-off for jitter characterization	2	50 ±1.0 Ω	2.92 mm female	30/20 GHz*3,*4
80E06	High-speed electrical device characterization	1	50 ±0.5 Ω	1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination	70+ GHz
80E04	TDR impedance and crosstalk characterization	2	50 ±0.5 Ω	3.5 mm female	20 GHz*3
80E03	Device characterization	2	50 ±0.5 Ω	3.5 mm female	20 GHz*3
80E02	Low-level signals	2	50 ±0.5 Ω	3.5 mm female	12.5 GHz*3
80E01	High-frequency, high maximum operating range signal acquisition	1	$50 \pm 0.5 \Omega$	2.4 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination	50 GHz

[&]quot;2 Values shown are warranted unless printed in an italic typeface, which represents a non-warranted characteristic value that the instrument will typically perform to.

^{*3} Calculated from 0.35 bandwidth rise time product.

^{*4} User-selectable.

► Electrical Sampling Module Characteristics (continued)

	Rise Time (10% to 90%)	Dynamic Range	Offset Range	Maximum Operating Voltage	Maximum Non-destruct Voltage, DC+AC _{pk-pk}	Vertical Number of Digitized Bits
80E10	7 ps*5	1.0 V _{pk-pk}	±1.1 V	±1.1 V	2.0 V	14-Bits full scale
80E09	5.8 ps*5	1.0 V _{pk-pk}	±1.1 V	±1.1 V	2.0 V	14-Bits full scale
80E08	11.7 ^{*5}	1.0 V _{pk-pk}	±1.1 V	±1.1 V	2.0 V	14-Bits full scale
80E07	11.7 ^{*5}	1.0 V _{pk-pk}	±1.1 V	±1.1 V	2.0 V	14-Bits full scale
80E06	5.0 ps*5	1.0 V _{pk-pk}	±1.6 V	±1.6 V	2.0 V	14-Bits full scale
80E04	≤17.5 ps	1.0 V _{pk-pk}	±1.6 V	±1.6 V	3.0 V	14-Bits full scale
80E03	≤17.5 ps	1.0 V _{pk-pk}	±1.6 V	±1.6 V	3.0 V	14-Bits full scale
80E02	≤28 ps	1.0 V _{pk-pk}	±1.6 V	±1.6 V	3.0 V	14-Bits full scale
80E01	7 ps*5	1.0 V _{pk-pk}	±1.6 V	±1.6 V	2.0 V	14-Bits full scale

^{*5} Calculated from 0.35 bandwidth rise time product.

► Electrical Sampling Module Characteristics (continued)

	Vertical Sensitivity Range	DC Vertical Voltage Accuracy, Single Point, within ±2 °C of Compensated Temperature	Typical Step Response Aberrations*6	RMS Noise*6
80E10	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±1% or less over the zone 10 ns to 20 ps before step transition; +6%, -10% or less for the first 400 ps following step transition; +0%, -4% or less over the zone 400 ps to 3 ns following step transition; +1%, -2% or less over the zone 3 ns to 100 ns following step transition; ±1% after 100 ns following step transition	50 GHz: <i>600 μV</i> , ≤700 μV 40 GHz: <i>370 μV</i> , ≤480 μV 30 GHz: <i>300 μV</i> , ≤410 μV
80E09	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±1% or less over the zone 10 ns to 20 ps before step transition; +6%, -10% or less for the first 400 ps following step transition; +0%, -4% or less over the zone 400 ps to 3 ns following step transition; +1%, -2% or less over the zone 3 ns to 100 ns following step transition; ±1% after 100 ns following step transition	60 GHz: <i>450 μV</i> , ≤600 μV 40 GHz: <i>330 μV</i> , ≤480 μV 30 GHz: <i>300 μV</i> , ≤410 μV

^{*6} Values shown are warranted unless printed in an italic typeface, which represents a non-warranted characteristic value that the instrument will typically perform to.

	Vertical Sensitivity Range	DC Vertical Voltage Accuracy, Single Point, within ±2 °C of Com- pensated Temperature	Typical Step Response Aberrations*6	RMS Noise*6
80E08	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	$\pm 1\%$ or less over the zone 10 ns to 20 ps before step transition; $+6\%$, -10% or less for the first 400 ps following step transition; $+0\%$, -4% or less over the zone 400 ps to 3 ns following step transition; $+1\%$, -2% or less over the zone 3 ns to 100 ns following step transition; $\pm 1\%$ after 100 ns following step transition	30 GHz: <i>300 μV,</i> ≤410 μV 20 GHz: <i>280 μV,</i> ≤380 μV
80E07	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±1% or less over the zone 10 ns to 20 ps before step transition; +6%, -10% or less for the first 400 ps following step transition; +0%, -4% or less over the zone 400 ps to 3 ns following step transition; +1%, -2% or less over the zone 3 ns to 100 ns following step transition; ±1% after 100 ns following step transition	30 GHz: <i>300 μV,</i> ≤410 μV 20 GHz: <i>280 μV,</i> ≤380 μV
80E06	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±5% or less for first 300 ps following step transition	1.8 mV, ≤2.4 mV (maximum)
80E04	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±3% or less over the zone 10 ns to 20 ps before step transition; +10%, -5% or less for the first 300 ps following step transition; ±3% or less over the zone 300 ps to 5 ns following step transition; ±1% or less over the zone 5 ns to 100 ns following step transition; 0.5% after 100 ns following step transition	
80E03	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±3% or less over the zone 10 ns to 20 ps before step transition; +10%, -5% or less for the first 300 ps following step transition; ±3% or less over the zone 300 ps to 5 ns following step transition; ±1% or less over the zone 5 ns to 100 ns following step transition; ±0.5% after 100 ns following step transition	,

⁶ Values shown are warranted unless printed in an italic typeface which represents a non-warranted characteristic value that the instrument will typically perform to.

► Electrical Sampling Module Characteristics (continued)

	Vertical Sensitivity Range	DC Vertical Voltage Accuracy, Single Point, within ±2 °C of Com- pensated Temperature	Typical Step Response Aberrations*6	RMS Noise*6
80E02	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	$\pm 3\%$ or less over the zone 10 ns to 20 ps before step transition; $+10\%$, -5% or less for the first 300 ps following step transition; $\pm 3\%$ or less over the zone 300 ps to 5 ns following step transition; $\pm 1\%$ or less over the zone 5 ns to 100 ns following step transition; $\pm 0.5\%$ after 100 ns following step transition	400 μV, ≤800 μV (maximum)
80E01	10 mV to 1.0 V full scale	± [2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)]	±3% or less over the zone 10 ns to 20 ps before step transition; +12%, -5% or less for the first 300 ps following step transition; +5.5%, -3% or less over the zone 300 ps to 3 ns following step transition; ±1% or less over the zone 3 ns to 100 ns following step transition; ±0.5% after 100 ns following step transition	<i>1.8 mV,</i> ≤2.3 mV (maximum)

► TDR System (80E10, 80E08 and 80E04 only)

	80E10	80E08	80E04
Channels	2	2	2
Input Impedance	50 Ω nominal	50 Ω nominal	50 Ω nominal
Channel Input Connector	1.85 mm	2.92 mm	3.5 mm
Bandwidth	50 GHz	30 GHz	20 GHz
TDR Step Amplitude	250 mV (polarity of either step may be inverted)	250 mV (polarity of either step may be inverted)	250 mV (polarity of either step may be inverted)
TDR System Reflected Rise Time	15 ps	20 ps	28 ps
TDR System Incident Rise Time	12 ps	18 ps	23 ps
TDR Step Deskew Range	±250 ps	±250 ps	±50 ps
TDR Sampler Deskew Range	±250 ps	±250 ps	+100 ns –500 ps (slot deskew only)
TDR Step Maximum Repetition Rate	200 kHz	200 kHz	200 kHz

^{*6} Values shown are warranted unless printed in an italic typeface which represents a non-warranted characteristic value that the instrument will typically perform to.

▶ Physical Characteristics for Electrical Sampling Modules

Dimensions (mm/in.)

Weight (kg/lbs.

	Width	Height	Depth	Net
80E10*7	55/2.2	25/1.0	75/3.0	0.175/0.37
80E09*7	55/2.2	25/1.0	75/3.0	0.175/0.37
80E08*7	55/2.2	25/1.0	75/3.0	0.175/0.37
80E07*7	55/2.2	25/1.0	75/3.0	0.175/0.37
80E06	79/3.1	25/1.0	135/5.3	0.4/0.87
80E04	79/3.1	25/1.0	135/5.3	0.4/0.87
80E03	79/3.1	25/1.0	135/5.3	0.4/0.87
80E02	79/3.1	25/1.0	135/5.3	0.4/0.87
80E01	79/3.1	25/1.0	135/5.3	0.4/0.87

^{*7} Remote sampler module characteristics.

▶ Ordering Information

80E10

Dual-channel, 50 GHz True Differential TDR Sampling Module with Remote Samplers.

Includes: User manual, certificate of traceable calibration standard, two precision adapters to 2.92 mm included with 50 Ω SMA terminations.

80E09

Dual-channel, 60 GHz Sampling Module.

Includes: User manual, certificate of traceable calibration standard, two precision adapters to 2.92 mm included with 50 Ω SMA terminations.

80E08

Dual-channel, 30 GHz True Differential TDR Sampling Module with Remote Samplers.

Includes: User manual, certificate of traceable calibration standard, two 50 Ω SMA terminations.

80E07

Dual-channel, 30 GHz Sampling Module.

Includes: User manual, certificate of traceable calibration standard, two 50 Ω SMA terminations.

80E06

70+ GHz Electrical Sampling Module.

Includes: User manual, calibration data report, precision adapter to 2.92 mm with 50 Ω SMA termination.

80E06X2 – Bundled ordering configuration provides two 80E06 modules.

80E04

Dual-channel, 20 GHz True Differential TDR Sampling Module.

Includes: User manual, calibration data report, two 50 Ω SMA terminations.

80E03

Dual-channel, 20 GHz Sampling Module.

Includes: User manual, calibration data report, two 50 Ω SMA terminations.

80E02

Dual-channel, 12.5 GHz Sampling Module.

Includes: User manual, calibration data report, two 50 Ω SMA terminations.

80F01

Single-channel, 50 GHz Sampling Module.

Includes: User manual, calibration data report, precision adapter to 2.92 mm included with 50 Ω SMA termination.

80E01X2 – Bundled ordering configuration provides two 80E01 modules.

Service Options

Opt. C3 – Three years of calibration service.

Opt. C5 – Five years of calibration service.

Opt. D1 – Calibration data reports (not available with 80E07-80E10).

Opt. D3 - Three years of calibration data reports.

Opt. D5 - Five years of calibration data reports.

Opt. R3 - Extended repair warranty to three years.

Opt. R5 – Extended repair warranty to five years.

Electrical Sampling Modules

▶ 80E10 • 80E09 • 80E08 • 80E07 • 80E06 • 80E04 • 80E03 • 80E02 • 80E01

Contact Tektronix:

ASEAN / Australasia (65) 6356 3900

Austria +41 52 675 3777

Balkan, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium 07 81 60166

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Central East Europe, Ukraine and the Baltics $\,$ +41 52 675 3777

Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France +33 (0) 1 69 86 81 81 Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-22275577

Italy +39 (02) 25086 1

Japan 81 (3) 6714-3010

Luxembourg +44 (0) 1344 392400

Mexico, Central America & Caribbean 52 (55) 5424700

Middle East, Asia and North Africa +41 52 675 3777

The Netherlands 090 02 021797

Norway 800 16098

People's Republic of China 86 (10) 6235 1230

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea 82 (2) 528-5299

Russia & CIS +7 (495) 7484900

South Africa +27 11 254 8360

Spain (+34) 901 988 054

Sweden 020 08 80371 **Switzerland** +41 52 675 3777

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 12 May 2006

Our most up-to-date product information is available at:

www.tektronix.com

Product(s) are manufactured in ISO registered facilities.

Copyright © 2006, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.

06 HB/WOW 85W-13497-7

Other Accessories

Sampling Module Extender Cable (2-meter Length) — Order 80N01 (not for use with 80E07-80E10).

2X Attenuator (SMA Male-to-Female) – Order 015-1001-01.

5X Attenuator (SMA Male-to-Female) – Order 015-1002-01.

Adapter (2.4 mm Male to 2.92 mm Female – Can Also Be Used as 1.85 mm Male to 2.92 mm Female) – Order 011-0157-00.

P8018 – 20 GHz Single-ended TDR Probe. 80A02 module (below) recommended for static protection of the sampling or TDR module.

P80318 – 18 GHz Differential TDR Probe. 80A02 module (below) recommended for static protection of each channel of the sampling or TDR module.

80A02 – EOS/ESD Protection Module (1 channel). P8018 or P80318 TDR probe (above) recommended.

Interconnect Cables (Third Party)

Tektronix recommends using quality highperformance interconnect cables with these high bandwidth products in order to minimize measurement degradation and variations. The W.L. Gore & Associates' cable assemblies, accessible at http://www.gore.com/tektronix, are compatible with the 2.92 mm, 2.4 mm and 1.85 mm connector interface of the 80Exx modules. Assemblies can be ordered by contacting Gore at the URL above.

Calibration Kits and Accessories (Third Party)

To facilitate S-parameter measurements with these electrical modules and IConnect® software, we recommend precision calibration kits, adapter kits, connector savers, airlines, torque wrenches and connector gauges from Maury Microwave.

These components, accessible at www.maurymw.com/tektronix.htm, are compatible with the 2.92 mm, 2.4 mm and 1.85 mm connector interface of the 80Exx modules. Calibration kits and other components can be ordered by contacting Maury Microwave at the URL above.